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Abstract: In  this  work,  based  on  physical  vapor  deposition  and  high-temperature  annealing  (HTA),  the  4-inch  crack-free  high-
quality AlN template is initialized. Benefiting from the crystal recrystallization during the HTA process, the FWHMs of X-ray rock-
ing curves for (002) and (102) planes are encouragingly decreased to 62 and 282 arcsec, respectively. On such an AlN template,
an  ultra-thin  AlN  with  a  thickness  of  ~700  nm  grown  by  MOCVD  shows  good  quality,  thus  avoiding  the  epitaxial  lateral  over-
growth (ELOG) process in which 3–4 μm AlN is essential to obtain the flat surface and high crystalline quality. The 4-inch scaled
wafer provides an avenue to match UVC-LED with the fabrication process of traditional GaN-based blue LED, therefore signific-
antly improving yields and decreasing cost.
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1.  Introduction

The  explosive  spread  of  the  coronavirus  disease  (COVID-
19)  in  the  2019  pandemic  intensively  excites  the  require-
ment for high-efficiency environmental sterilization that inter-
rupts the most important link in the chain of disease transmis-
sion.  Although  plenty  of  conventional  methods  have  been
used,  e.g.  alcohol  immersion,  high-temperature treatment,  as
well  as  high-energy  irradiation,  AlGaN-based  ultraviolet-C
(UVC, λ ≤ 280  nm)  light-emitting  diode  (LED)  disinfection  is
emerging as one of the most promising and convincing aven-
ues to confront COVID-19[1−3]. However, when compared with
conventional  GaN-based  blue  LED,  the  UVC-LED  only  exhib-
its  external  quantum efficiency (EQE)  less  than 10%[4].  One of
the most crucial  challenges is  the difficulty of acquiring high-
crystalline  lattice-matched  meanwhile  a  non-UV-absorbed
substrate  for  upper  UVC  device  epitaxy.  Due  to  the  short
wavelength  of  UVC  irradiation,  the  large  band  gap  (>4.6  eV)
is  the  prerequisite  to  screen  the  candidates  of  whom  sap-
phire  and  aluminum  nitride  (AlN)  substrates  are  both  quali-
fied.  Unfortunately,  by weighing the trade-off  between large-
wafer scale and lattice-match, neither of them is overall-com-
petent:  the  large  lattice-mismatch  exhibits  between  sapphire
and  AlGaN  epilayer  while  the  inch-scale  AlN  wafer  prepara-

tion  is  still  a  great  challenge.  Direct  AlN  epitaxy  on  sapphire
substrate  usually  accompanies  high  dislocation  density  (1010

cm–2),  which  murders  the  device  performance.  Nevertheless,
the proposal and verification of the face-to-face high-temperat-
ure  annealing  (HTA)  technique  obviously  relieves  on  the
above embarrassment through achieving an excellent-crystal-
line  AlN  template  on  sapphire  substrates[5, 6].  Subsequently,
the  successful  regrowth  of  pronounced-crystalline  AlN[5, 7, 8]

and  AlGaN[9, 10] epilayers  as  well  as  a  full  structure  UVC-LED
device[11, 12] by  metal-organic  chemical  vapor  deposition
(MOCVD)  unambiguously  highlights  the  validation  and  pro-
spective of such a solution.

From  the  viewpoint  of  industry  and  commercialization,
the employment of economical AlN template,  a 4-inch scaled
wafer  in  particular  would  be  more  attractive  if  it  exhibits  the
possibility  to  further  reduce  the  cost  of  UVC-LED:  (i)  the  cost
would  be  intensively  decreased  by  using  crack-free  4-inch
AlN template which has never been achieved to date; and (ii)
the previously necessary epitaxial  thickness of 3–4 μm (to ac-
quire the qualified flat  morphology and high crystalline qual-
ity  for  subsequent  device  epitaxy)  would  be  avoided  and
largely save the expense of device epitaxy.

In this work,  by combining the physical  vapor deposition
(PVD)  and  face-to-face  HTA  technique,  for  the  first  time,  a  4-
inch  single-crystalline  AlN  template  whose  dislocation  dens-
ity  is  as  low  as  9.2  ×  108 cm–2 level  is  achieved.  On  the  basis
of  the HTA AlN template,  the MOCVD regrowth of  homo-epi-
taxial AlN layer at the 4-inch wafer scale is initialized, highlight-
ing the prospective of  wafer-sized HTA AlN templates in  UVC
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irradiation source revolution. 

2.  Experiment

Four-inch  AlN  wafers  were  prepared  on c-plane  sap-
phires by reaction magneto-sputtering technique using alumin-
um (purity ~ 99.999%) as the target, and the sputtering ambi-
ent was set as the mixture of argon and nitrogen as a ratio of
1  :  4.  The  AlN thickness  was  set  as  500 nm by calibrating the
growth  speed  and  the  sputtering  power  was  3000  W.  After-
wards,  as-sputtered  AlN  wafers  were  annealed  by  utilizing  a
tube furnace at 1700 °C for over 5 h, and the annealing ambi-
ent was nitrogen with a flow rate of 0.5 SLM. The MOCVD AlN
regrowth was performed by a Prismo HiT3 MOCVD system at
a  temperature  of  1200  °C.  The  regrown  thickness  is  200  nm.
The rocking curves  of  AlN (002)  and (102)  planes  were  meas-
ured by X-ray diffraction (XRD, Brucker D8 Discovery) to evalu-
ate  the  AlN  crystallinity.  High-angle  annular  dark-field  scan-
ning transmission electron microscopy (HAADF-STEM) was car-
ried  out  in  a  Thermo  fisher  FEI  Themis  Z  Cs  probe-corrected
STEM  system  operated  at  300  kV,  weak-beam  dark-field
(WBDF)  TEM  was  observed  using  Tecnai  F30  at  300  kV.  The
scanning  electron  microscopy  (SEM,  Hitachi  Regulus  8100)
and atomic force microscopy (AFM, Veeco DimensionTM 3100)
with a typing mode were used to explore the surface morpho-
logy of all AlN samples. 

3.  Results and discussion

Fig.  1 shows XRD rocking curves (XRC)  of  (002)  and (102)
planes  of  as-sputtered  and  HTA  AlN.  Before  the  HTA  treat-
ment,  the as-sputtered AlN presents c-oriented characteristic.
The  full  width  at  half  maximum  (FWHM)  of  (002)  and  (102)

XRC are 192 and 2793 arcsec, respectively, which are compar-
able  with  the  values  of  previously  reported  as-Al  target-
sputtered[12, 13],  as-AlN  target-sputtered[6, 14],  as  well  as  as-
MOCVD-grown AlN films[15]. Notably, the HTA treatment intens-
ively  improves  the  crystallinity  of  as-sputtered  sample,  and
the FWHMs of (002) and (102) planes decrease to 62 and 282
arcsec,  respectively,  indicating  the  highly  ordered  re-align-
ment  of  the  crystalline  lattice  triggered  by  high  temperature
process[16].  According  to  the  mosaic  model,  the  densities  of
two-type dislocation are described as below[17−19]: 

Ddis =
β

.b
, (1)

β
β β

where  the Ddis represents  the  density  of  dislocation, b is  the
length  of  Burgers  vector,  with  values  of  0.4982  and  0.3112
nm for screw- and edge-type dislocations, respectively;  rep-
resents  the  tilt  angle tilt or  twist  angle twits of  the  mosaic
structure,  which  are  obtained  by  analyzing  the  dependence
of FWHM values of XRCs on different symmetric and asymmet-
ric  planes,  respectively[17, 20−23].  It  is  worth  noting  that  the
HTA  obviously  reduces  the  total  threading  dislocation  dens-
ity  (TDD)  from  9.27  ×  1010 to  9.20  ×  108 cm–2,  whereas  the
screw  and  edge  dislocation  densities  decrease  from  8.02  ×
107 and  9.26  ×  1010 cm–2 down  to  8.37  ×  106 and  9.19  ×  108

cm–2.  Such a reduction in dislocation density is mainly due to
the recrystallization and lattice rearrangement process of  AlN
columnar  crystals[6, 24],  and  during  which  it  is  partially  as-
sisted  by  the  reduction  of  lattice  mismatch  between  the  AlN
and sapphire substrate at ultra-high temperatures. Due to the
larger  thermal  expansion  coefficient  of  sapphire  (αa =  8.1  ×
10–6 K–1) over AlN (αa = 4.2 × 10–6 K–1)[25],  the lattice paramet-
ers  along the a-axis  are  changed from 0.3111 and 0.4758 nm
to 0.3133 and 0.4824 nm for AlN and sapphire substrate from
room temperature to 1700 °C, respectively, thus the lattice mis-
match  is  reduced  from  13.3%  to  12.5%,  which  partly  contrib-
utes  to  the  improvement  of  excellent  crystalline  quality  of
the AlN layer.

To  capture  more  information  of  the  HTA  AlN,  the  dark
field  cross-sectional  TEM  measurement  was  adopted,  with
two beam conditions carried out to analyze dislocations in dif-
ferent types. As shown in Figs. 2(a) and 2(b), the screw-type dis-
location  is  nonvisible  while  only  two  edge-type  dislocation
lines are seen in the scanned area. Such low dislocation dens-
ity agrees with XRC results. To analyze the dislocation annihila-
tion  driven  by  HTA  operation,  high-resolution  HAADF-STEM
was  performed,  focusing  on  the  interfacial  region  between
HTA AlN and sapphire. From the Fig. 2(c), an atomically sharp
interface between sapphire and HTA AlN is visible and demon-
strates a nice epitaxial nature in the high temperature treated
AlN/sapphire  system.  However,  a  color-contrast  region
around 10 nm away from the interface is detected as a bound-
ary  between  sapphire-neared  N-polar  AlN  and  upper  Al-po-
lar  AlN.  Actually,  such  a  depth  has  been  observed  and  veri-
fied  as  inversion  domain  boundary  which  consists  of  com-
pound  (111)  γ-AlON[13, 26, 27].  According  to  the  Al2O3–AlN–
AlON  system  phase  diagram[26],  the  γ-AlON  does  not  directly
contribute  to  the  crystalline  optimization.  However,  as  we
know,  the  as-sputtered  AlN  film  exhibits  columnar-like  AlN
grains  which  perform  lateral  polarity  distribution  and  the
grain  boundaries  between  these  domains  are  important
source of  threading dislocations[28, 29].  As  shown in Fig.  2,  the
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Fig.  1.  (Color  online)  The  XRD  rocking  curves  (XRC)  of  (002)  (circles)
and  (102)  (squares)  planes  for  (a)  as-sputtered  and  (b)  HTA  AlN
samples.
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participation of γ-AlON successfully turns the N-polar phase in-
to homogenous Al-polar one. Therefore, although the particip-
ation of  such a  γ-AlON region does not  directly  contribute to
the crystalline improvement, it potentially suppresses the pos-
sible  generation  of  threading  dislocations  from  the  grain
boundaries between the N-polar and Al-polar regions by form-
ing a uniform stable Al-polar epilayer.

In addition to the prospective from the application point
of  view,  a  series  of  fundamental  experience,  which  possibly
deepens  the  understand  of  high  temperature  AlN  regrowth,
particularly  the  contribution  from  oxides  cooperation[14],
curvature[30, 31],  as well  as defect evolution[10, 32, 33],  are collec-
ted.  Some  methods  reveal  new  avenues  to  intentionally  im-
prove the  high-temperature  annealing film,  e.g.  artificially  in-
volving  the  domain  inverse  region  to  release  the  interfacial
stress  by  fully  employing  oxidation[14].  Therefore,  our  HTA
AlN template acts as a great test bed to explore the optimiza-
tion of single-crystal thin film.

The morphologies of as-sputtered, post-annealed, as well
as  MOCVD-regrown,  AlN  were  studied  by  AFM,  and  the  res-
ults  are  shown  in Fig.  3.  The  as-sputtered  AlN  presents  the
columnar-morphology which is the same as the previously re-
ported  AlN  film  prepared  by  magneto-sputtering[5, 6, 13],  and
the  root  mean  square  (RMS)  is  2.62  nm.  The  HTA  operation
does  not  essentially  change  the  morphology:  the  columnar-
or  particle-like  instead of  the reported step-bunching surface
with  an  RMS  of  0.86  nm  is  present.  Such  a  distinction  is  pos-
sibly  from  the  different  target  used  in  the  sputter  process,
e.g. the step-bunching morphology is mostly observed in the
AlN  target  sputtered  system[5, 6, 9, 10, 14, 34−36],  but  the  particle-

like morphology is mostly detected in the Al target sputtered
one[7],  and this  may affect  the  surficial  decomposition during
the  annealing  treatment.  Nevertheless,  it  seems  that  such  a
rough  surface  does  not  negatively  contribute  to  the  sub-
sequent AlN regrowth by MOCVD, and the AFM and SEM im-
ages of  MOCVD-grown AlN layer  are  present  in Figs.  3(c) and
3(d). It is seen that the as-annealed rough surface has been re-
freshed by the step-bunching morphology which results from
the high enough diffusion length of Al atom exceeding a cer-
tain value in relation to the terrace width[37],  indicative of the
ideal  platform  of  HTA  AlN  for  subsequent  AlN-based  device
fabrication. The obtained morphology and RMS are both com-
parable  with  the  samples  prepared  by  epitaxial  lateral  over-
growth (ELOG) at high temperatures[3]. Encouragingly, the suc-
cessful epitaxy of regrown AlN fulfils the prerequisite of fabric-
ating 4-inch UVC-LED.

(102)

When  compared  with  a  2-inch  wafer,  the  4-inch  AlN  lay-
er  grown  on  sapphire  by  MOCVD  generally  exhibits  larger
bow and terrible cracks which is  detrimental  to upper epilay-
ers  and  acts  as  the  main  obstacle  to  large-sized  device  epi-
taxy[38, 39].  As  shown  in Fig.  4(b),  the  regrown  AlN  layer  on  4-
inch  HTA  template  clearly  shows  an  advantage  in  this  view-
point  that  the  cracks  just  appear  at  the  region  around  1.5
mm away from the edge.  The wafer-scaled surface cracks  are
visibly  measured  by  Candela,  and  the  results  are  shown  in
Figs. 4(c) and 4(d).  It  is observed that the conventional 4-inch
AlN/NPSS  template  obtained  by  the  ELOG  process  presents
lots of cracks on the surface, even in the central region of the
wafer.  Meanwhile, as shown in Figs. 4(b) and 4(c),  only a little
bit  roughening  appears  in  the  edge  region.  The  comparison
emphasizes  the  advantage  of  the  HTA  technique  in  achiev-
ing  4-inch-sized  high-quality  single-crystalline  AlN  template.
Moreover,  the FWHM values of XRC (002) and  planes in
selected  five  points  [shown  in Fig.  4(a)]  on  as-annealed  and
post-regrown  samples  indicate  excellent  homogeneity,  as
shown  in Table  1.  In  addition  to  crystallinity,  the  strain  of  re-
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Fig.  2.  Cross-sectional  weak-beam  dark-field  (WBDF)  TEM  images
of HTA AlN taken under diffraction conditions of (a) g = ( ) and (b)
g = ( ). For g = ( )/( ), the screw-type/edge-type dislocation is
visible.  (c)  Cross-sectional  high-resolution  HAADF-STEM  along  the
[ ] direction by focusing on the interfacial region.
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Fig.  3.  (Color  online)  Atomic  force  microscopy  images  of  (a)  as-
sputtered AlN, (b) HTA AlN as well as (c) MOCVD regrown AlN. (d) The
SEM image of MOCVD regrown AlN on HTA AlN template. The height
bar is 20 nm.
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grown AlN layer also presents a homogenous compressive fea-
ture with a value of about 0.08% as shown in Table 1. 

4.  Conclusion

In summary, the pronounced single-crystalline 4-inch AlN
templates  with  dislocation  density  as  low  as  9.2  ×  108 cm–2

on  the c-plane  sapphire  are  achieved.  Thanks  to  such  high-
quality AlN template, the MOCVD regrown AlN with the thick-
ness  of  only  700  nm  shows  comparative  quality  as  the  3–4
μm  AlN  layer  grown  by  ELOG.  The  exhibiting  bunching-step
morphology  and  low  dislocation  density  in  the  regrown  4-
inch AlN layer prove its qualification of being an ideal candid-
ate substrate for low-cost UVC-LEDs. 
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Fig.  4.  (Color  online)  (a)  Positions  of  five  measured  XRC  points  on  4-
inch as-sputtered AlN and MOCVD regrown AlN wafers,  and the res-
ults are shown in Table 1. (b) Optical microscopy image of the edge re-
gion in MOCVD regrown AlN wafer on 4-inch HTA AlN template. The im-
ages of surface cracks on (c) HTA AlN and (d) AlN/NPSS templates are
measured by Candela.

Table 1.   Five points XRC FWHMs and θ–ω calculated strains of 4-inch
post-HTA AlN and MOCVD regrown AlN wafers.

Position
HTA AlN
FWHM (002)/(102)
(arcsec)

Regrown AlN
FWHM (002)/(102)
(arcsec)

Regrown
AlN strain //
c (%)

1 87 / 310 162 / 381 0.0869
2 64 / 288 95 / 372 0.0799
3 57 / 283 85 / 320 0.0795
4 61 / 310 78 / 312 0.0795
5 70 / 321 89 / 329 0.0807
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